ASSESSMENT OF BIODIESEL PRODUCTION POTENTIAL IN THE SOUTHEAST: FINAL REPORT

Daniel g. De La Torre Ugarte, Richard L. White, Stephen P. Slinsky, Anthony Turhollow, Daryll E. Ray, Kelly H. Tiller, and Dana D. Bagwell

The authors are Research Associate Professor, Project Manager, and Research Associate, all of the University of Tennessee Agricultural Policy Analysis Center (APAC); oilseed crop consultant; Professor and Blasingame Chair (APAC); Research Associate Professor (APAC); and Graduate Research Assistant (APAC)

May 1999

Prepared for the Southeast Regional Biomass Energy Program

Contract 97RKW-219278
TABLE OF CONTENTS

Chapter 1: Introduction .. 1
Scope and Study Region ... 3

Chapter 2: Methodology .. 5
Crop Sector Analysis .. 6
Developing Crop Budgets ... 6
Enterprise and Rotational Budgets for Conventional Crops ... 7
Enterprise and Rotational budgets for Alternative Oilseed Crops ... 7
Developing Canola Budgets ... 8
Developing Sunflower Budgets ... 13
Policy Analysis System (POLYSYS) .. 18
The Soybean Complex in POLYSYS .. 19
Example: Estimating Demands and Prices for Soybeans .. 24
Analytical Scenarios .. 29
Animal Fats Analysis ... 32
Estimating the Supply of Animal Fats .. 32
Relating Supply of Animal Fats to the Crop Sector ... 35

Chapter 3: Crop Analysis Results ... 37
POLYSYS Expansion ... 37
Analysis of Results .. 38
Scenario 1: Biodiesel Use as in 1996 ERS/USDA Study, 770 Million Pounds by 2005 42
Scenario 2: Biodiesel Use Twice That of 1996 ERS/USDA Study, 1,540 Million Pounds by 2005 .. 45
Scenario 3: Biodiesel Use One Percent of Middle Distillate Fuels, 3,850 Million Pounds by 2005 ... 47
Effects on the SERBEP Region .. 50

Chapter 4: Animal Fats Analysis Results .. 56
Livestock Slaughter in the Study Region .. 56
Tallow and Lard Production ... 61
Animal Fats from Broilers ... 62
Biodiesel Production Potential .. 63

Chapter 5: Conclusions ... 67
The Use of Vegetable Oils for Biodiesel in the Southeast .. 67
The Use of Animal Fats for Biodiesel in the Southeast .. 68

References .. 71

Appendix A
Sources Used in Developing the ABS Enterprise Budgets
Budgets Used in SERBEP Region Simulations..accompanying CD-Rom

Appendix B
POLYSYS Overview

Appendix C
National Baseline*
SERBEP Region Baseline ...accompanying CD-Rom

Appendix D
National Simulation Results*
SERBEP Region Simulation Results ..accompanying CD-Rom

*Note: National baseline and simulation numbers can also be found on the accompanying CD-Rom.
LIST OF TABLES

Table 1. Canola and sunflower area, production, and yield in the study region, 1992 8
Table 2. Example of a canola enterprise budget ... 11–13
Table 3. Example of a sunflower enterprise budget .. 16–18
Table 4. Crop demand module demand elasticities for model crops 20
Table 5. Demand elasticities for crop derivative products ... 21
Table 6. Price flexibilities for crop derivative products ... 23
Table 7. Oil demand and oilseed yield scenarios used for simulation 30
Table 8. Present and expected future value of oil and meal in oilseeds 31
Table 9. Conversion factors used in the animal fats analysis ... 34
Table 10. Direct and cross supply elasticities for model livestock categories 36
Table 11. Long run production adjustment coefficients for model livestock categories 36
Table 12. Biodiesel demand in each scenario by year (million pounds) 40
Table 13. Soybean oil ending stock levels (million pounds) .. 40
Table 14. Baseline and simulated per-unit average market prices by simulation
for soybean oil and meal by year ... 41
Table 15. Baseline and scenario per-unit prices for the major crops during 2007 41
Table 16. Baseline and scenario planted acreage information by simulation
for the major crops by year (million acres) ... 42
Table 17. Results of scenarios 1, 2, and 3 in the SERBEP region ... 51
Table 18. Realized net farm income by 2007 (million dollars) ... 55
Table 19. Total livestock slaughter of cattle, calves, hogs, and sheep and lambs
in the SERBEP region, 1994-97 (1,000 head) .. 57
Table 20. Total liveweight slaughter of cattle, calves, hogs, and sheep and lambs,
1994-97 (1,000 pounds) .. 58
Table 21. Broiler production by state, 1994–97 (1,000 pounds). .. 59
Table 22. Estimated edible tallow production from cattle and sheep,
and inedible tallow from cattle, 1994-97 (1,000 pounds) .. 61
Table 23. Estimated lard production, 1994-97 (1,000 pounds) .. 62
Table 24. Estimated production of chicken fat by state and total, 1994–97 (1,000 pounds) 63
Table 25. Total potential feedstock for biodiesel processing from all animal sources,
1997 (1,000 pounds) ... 64
Table 26. Estimated tallow-derived biodiesel and glycerine production potential in the study region, 1994-97 ..65
Table 27. Estimated potential biodiesel production from chicken fat based on February 1998 USDA baseline projections for 2007 ...66
LIST OF FIGURES

Figure 1. Geographic area included in the analysis ... 4
Figure 2. General methodology for the crop portion of the analysis 5
Figure 3. Alternative Canola Production Regions (ACPRs) .. 9
Figure 4. General canola planting dates in the study region .. 10
Figure 5. Study region ASDs selected as appropriate for sunflower production 15
LIST OF GRAPHS

Graph 1. Soybean price: Baseline and simulations 1a and 1b .. 44
Graph 2. Soybean price: Baseline and simulations 2a and 2b .. 47
Graph 3. Soybean price: Baseline and simulations 3a and 3b .. 49
The United States consumes approximately 50 billion gallons of middle distillate fuels (diesel and home heating oil) annually. Biodiesel, which can be made by chemically combining several types of natural oils or fats with an alcohol to form alkyl esters of fatty acids, can be a viable substitute for or additive to petroleum diesel.

This study assesses the role that the Southeastern region may play in supplying feedstock for biodiesel production if demand for biodiesel expands. The study estimates the potential supply of biodiesel feedstock from oilseed crops currently produced in the Southeastern region as well as from oilseed crops that could be incorporated into agricultural production in the Southeast. In addition to examining the current supply potential, the study estimates supply potential that could result from increasing the oil content of vegetable oil seed varieties. The study also estimates the potential supply of biodiesel feedstock from animal fats, based on the current state of the livestock sector in the Southeast, with particular emphasis on the poultry industry. Further the study addresses the impact that greater biodiesel demand would have on the crop and livestock sector in the Southeast as they relate to national agricultural markets in terms of price, land use, and farm income.

Using POLYSYS as the primary methodological tool, the study analyzes hypothetical increases in the demand for vegetable oils for processing up 3.85 million gallons of biodiesel. Simulations are also conducted that examine the potential impacts of introducing oilseed varieties with higher oil content. In addition to considering interactions among major crops currently produced in the Southeast, the study also incorporates introduction of two new oilseed crops in the SERBEP region: sunflower and canola.
The analysis indicates that price increases for oil crops will range between one and four percent, and any significant acreage reallocation will occur in the traditional soybean production areas. The prices of vegetable oils experience a 30 percent increase in the most aggressive scenario considered in the analysis (one percent of U.S. middle distillate fuels contributed by biodiesel). These price increases are not sufficient to bring significant production of sunflower and canola into the SERBEP region. Moreover, impacts on vegetable oil prices are greatest for the scenarios with higher demand for biodiesel and, therefore, substantial biodiesel use could, in effect, make vegetable oils a less attractive feedstock for biodiesel production.

The resulting changes in the crop sector and soybean meal prices do not result in a significant impact in the livestock sector, and therefore in the production of animal fats. However, given the expected growth in broiler production implied in the USDA baseline, significant levels of animal fat production, mainly from chickens, may be available by the year 2007. This additional supply of animal fats could sustain the production of a handful of new biodiesel facilities in the region, most notably in North Carolina, South Carolina, Georgia, and the Alabama-Mississippi-Arkansas sub-region.

The relationship between the prices of vegetable oils and animal fats is not directly addressed in this study. However, it would be fair to assume that given the inflexibility of the supply of animal fats with respect to the price of fat, the animal fat market offers relatively small opportunities to take advantage of any price swings in the vegetable oil markets. At the same time, it is hypothesized that an increase in the supply of vegetable oils – from, for example, the use of high-oil-content seed varieties – could help lower the price of animal fats through increasing the total availability of oils and fats. As prices of animal fats decline, they would become more attractive for use in biodiesel production. The SERBEP region has potential to
contribute to the growth of the biodiesel industry as the volume of animal fat from the poultry sector increases and as the total U.S. supply of vegetable oils increases.